Development of Heat Transfer Diagnostics for ALPS

Sandia Team Richard Nygren, Dennis Youchison, Jim McDonald, Tina Tanaka, Tom Lutz, Ken Troncosa, Mike Ulrickson

ALPS-HT Team Sandia, ANL, UCLA others (overlap with APEX)

Work in progress:

- preparation of liquid metal loop for EBTS
- preparation of heated Li pool for EBTS
- preparation for IR measurements on Li

ALPS - Power Density

MHD suppresses turbulence in liquid metal.

A critical issue for liquid metal PFCs is how to increase the transfer of heat from the heated surface to the bulk fluid, as by 2-D turbulence or internal rotation in droplets.

In PFCs for APEX and ALPS, <u>developing</u> flow from nozzles is important.

Modeling these effects is a challenging computational problem.

The most productive approach is likely a combination of testing and analyses. For both, we need to develop tools.

Analysis: 3-D models, MHD effects in developing flows.

Tests: techniques to measure surface temperature

distributions in fast moving fluids.

- The full 3-D MHD analysis of a divertor or experiment is difficult.
- A "complete" heat transfer experiment is large and expensive.

"Full" Conditions:

vacuum free surface flow (v>10m/s) heat (neutral beam) heat rejection (HX) B>3T (s.c. magnets)

MHD issues:

developing flow
(inlet/outlet, bends, ∇B)
nozzle model
2-D turbulence
turbulence enhancement

Measurement issues:

fast moving surface spatial resolution (s=1mm) time resolution (s/v<100 μ s) emissivity (ϵ >0.1, IR software)

Approach:

- tools for MHD calculation
- appropriate diagnostics

Find a "good way" to do simple heat transfer tests.

Proceed to larger experiments.

Heat Transfer & Thermal-Hydraulics for ALPS

Develop Measurement Techniques

heater element with support and standoff

thermocouple (in SS boat)

Objectives:

calibrate IR image compare test with FE thermal model

Materials:

Ga pool (1999) Sn pool (1999)

Li pool, new boat (2000)

316SS boat "black hole" for IR calibration recess on bottom for heater

Prepare Li Loop for EBTS

Photo of chamber

- Chamber is ready and will be used for Li pool test
- Bids are being negotiated for Li loop (heated pot, pump, piping, collection basin, vacuum and controls)
- Nozzle and catcher system is in development.

Prepare Li Loop for EBTS

• We hope to collaborate with UCLA on an

improved nozzle design.

Calibration & Calorimetry: A Challenge for LM Surface Heating Experiments

3mm Sn drop/stream/film passes through a 20mm thick SOL at 10m/s (1ms) and absorbs 20MW/m².

A droplet absorbs ~0.14J. T_{bulk} (thermalized) rises 44°C.

A stream absorbs ~2.4J. T_{bulk} (thermalized) rises 9.4°C.

For a film, T_{bulk} (thermalized) rises 7.4°C.

We want to measure temperature distributions.

In a droplet or stream ejected from a nozzle, spin affects the surface heat distribution.

In a droplet or stream or film, turbulence (2-D) affects the heat flow.

Calibration & Calorimetry: A Challenge for LM Surface Heating Experiments

Basic features: flow velocity, v 5-20 m/s

spatial resolution, <u>s</u> 1-2 mm

desired acquisition time >.5s/v 50-100µs

IR TV rastor, f = 30 frames/s, 1/f=33ms

IR line scan mode, $f = \sim 1800$ line/s $1/f = \sim 500 \mu s$

We are planning heating tests with streams/ramps and droplets (no B-field) to develop thermal measurement techniques.

We are exploring possibilities for future tests with B-field.

